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When immersed in a non-uniform electrolyte solution, a rigid charged sphere migrates 
toward higher or lower concentration of the electrolyte depending on the relative ionic 
mobilities and the charge borne by the sphere. This motion has a twofold origin: first, 
a macroscopic electrolyte gradient produces an electric field which acts on the charged 
sphere (electrophoresis) ; secondly, the electrolyte gradient polarizes the cloud of 
counterions surrounding the charged sphere by making the cloud thinner on the 
high-concentration side (chemiphoresis). I n  this paper, we compute the terminal 
velocity of a non-conductive sphere through a slightly non-uniform solution of a 
symmetrically charged binary electrolyte. The analysis proceeds through an expan- 
sion in the small parameter h (defined as the ratio of the counterion-cloud thickness 
to the particle radius). Results to O ( h )  are presented. The only property of the sphere’s 
surface that affects the velocity is its zeta potential g when the electrolyte gradient 
vanishes; no information concerning the dependence of 5 upon ionic strength is 
needed. While the chemiphoretic effect always directs the particle toward higher 
electrolyte concentration, the electrophoretic contribution can move the particle in 
either direction depending on the sign of /3[, where /3 is a normalized difference in 
mobilities between cation and anion of the elecytrolyte ; thus particle movement could 
be directed toward either higher or lower electrolyte concentration depending on the 
physical properties of the system. With slight algebraic rearrangement, our results 
are also applicable to conventional electrophoresis (particle motion in an applied 
electric field) and show excellent agreement with the numerical calculations of 
O’Brien & White (1978). 

1. Introduction 
When placed in a solution that is macroscopically non-uniform in the concentration 

of some molecular solute, a colloidal particle moves in response to forces generated 
by interactions between its surface and the solute molecules. Derjaguin and coworkers 
(Derjaguin, Dukhin & Korotkova 1961 ; Dukhin & Derjaguin 1974) introduced the 
term ‘diffusiophoresis’ for this motion. In  Part 1 of this series (Anderson, Lowell & 
Prieve 1982) we derived an expression for the velocity of a rigid spherical particle 
through a viscous fluid containing a macroscopic gradient in the concentration of a 
non-electrolyte species, when the range of physical interactions between solute 
molecules and the particle is very short compared with the particle radius. If the 
interaction between solute molecules and the particle is attractive, the particle 
migrates toward higher solute concentration, whereas the movement is toward lower 
solute concentration if the interaction is repulsive. 
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In this paper we consider a charged spherical particle in a viscous fluid that is 
macroscopically non-uniform in the concentration of an electrolyte. The action of an 
electrolyte gradient differs in several respects from that of a non-electrolyte. First, 
dissolution of a simple salt in water, for example, produces two solute species instead 
of one : a counterion which is attracted to the charged sphere and a coion which is 
repelled by the sphere. Secondly, these two ions have different mobilities (diffusion 
coefficients). In an electrically neutral solution of a symmetrically charged binary 
electrolyte, equimolar gradients of the concentrations of the two species tend to give 
rise to cocurrent but unequal diffusion fluxes, and therefore tend to create a ‘diffusion 
current’ (Newman 1973). This tendency toward separation of charges is opposed by 
a macroscopic electric field which arises spontaneously to produce an ‘electrical 
current’, equal to the diffusion current but opposite in direction, so that no net 
current accompanies the diffusion of the salt. Thus, in the simplest case of diffusio- 
phoresis of a charged sphere caused by a gradient in the concentration of a simple 
salt, there are two species present and a macroscopic electric field, which represent 
three driving forces for the motion of the sphere. 

Derjaguin et al. (1961) calculated the migration velocity of a charged sphere in an 
electrolyte gradient by intuitively extending their analysis for the osmotic flow 
tangent to an infinite flat plate, generated by a non-electrolyte gradient. Apparently 
they linearly superimposed the diffusiophoretic velocity, generated by each species 
acting independently, with the electrophoretic velocity in a macroscopically uniform 
electrolyte generated by an externally applied field of the same strength as that 
induced by the salt gradient. Although this approach seems reasonable, few details 
are given of how the final result was obtained, and no criteria are specified for its 
validity (except for an infinitesimally thin double layer). 

In this paper we seek a solution for the velocity of a charged, rigid, non-conductive 
sphere spontaneously moving through a slightly non-uniform solution of a binary salt. 
By ‘slightly nonuniform’ we mean that, in the absence of the sphere, the change in 
salt concentration over a distance equal to the radius of the sphere is a small fraction 
of the salt concentration a t  the location of the sphere’s centre. We confine our 
attention to conditions for which the thickness of the counterion cloud (i.e. the Debye 
screening length K - ~ )  is much smaller than the sphere’s radius a. The ion concentration, 
electrostatic potential and velocity fields are expressed as regular power-series 
expansions in the small parameter ( K a ) - l ,  denoted by A. Separate expansions are 
obtained inside and outside the counterion cloud, which are then matched to yield 
the particle velocity u through @ A ) .  

In $2 we obtain u when the counterion cloud is differentially thin ( A  = 0). Profiles 
inside the cloud are deduced by assuming it to be locally planar and by neglecting 
any normal flux of ions or fluid. Thus the local fluid velocity immediately outside the 
cloud is found to be parallel to the local salt gradient. Profiles outside the cloud are 
obtained by assuming local electroneutrality and by using a boundary condition at 
the sphere’s surface in which slip occurs at  a velocity satisfying the inner solution. 
The resulting velocity field outside the cloud corresponds to potential flow. In the 
case of a differentially thin cloud, we show that the particle velocity u is independent 
of the shape as well as the size of the particle, provided that the local mean radius 
of curvature is everywhere much larger than the Debye length K - ~ .  

In $3 the mathematical description of the phenomena is reformulated for a 
spherical particle using a single set of equations, which is uniformly valid both inside 
and outside the counterion cloud. The solution is obtained in the following form using 
matched asymptotic expansions : 

u = u,+Au,+O(h2). ( 1 . 1 )  
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FIGURE 1.  Coordinates for flow near an infinite flat plate. K - ~  is the Debye screening length. The 
density of filled circles is meant to represent the concentration of counterions. 

In general, u is shown to depend on three independent groups of physical properties : 
(1) 5, the zeta potential of the particle in a uniform electrolyte solution having the 
same concentration that the non-uniform solution has at  the point where the sphere 
is immersed; (2) /3, the difference between cation and anion mobilities normalized by 
their sum; and (3) a PBclet number which depends on the charge number and 
apparent diffusion coefficient for the salt and the temperature, viscosity and dielectric 
constant of the fluid. The leading term 1, turns out to be identical with that calculated 
in $2, while U, is obtained in closed form as multiple integrals, which are evaluated 
analytically for small 5 and numerically for arbitrary 5. 

Some implications of these results are discussed in $4. Part of the solution for the 
diffusiophoretic velocity corresponds to the electrophoretic velocity generated by an 
applied electric field (see Appendix B). That part of the solution is compared to 
numerical results obtained by O’Brien & White (1978) and an analytical approximation 
obtained by O’Brien & Hunter (1981). Finally we show that a Pad6 approximant can 
be used to extend the results to larger A.  

2. Infinitesimally thin counterion cloud ( A  = 0) 
2.1. Flow near an injinite flat plane 

Consider an interface between a solid with charges affixed to its surface and a binary 
electrolyte solution which results from the complete dissociation of a simple symmetric 
salt MfZX-Z in a polar solvent. Further suppose that this interface forms a plane 
of infinite area and that the solution resting on this plane is infinitely thick. Let C, 
and C- denote the local number density of cations and anions respectively, and let 
the subscript co refer to a distant point in the solution which is beyond the influence 
of the charged interface. For example, by C, we mean that number density which 
C, and C- approach as y -f co for constant x, where the coordinates x and y are defined 
in figure 1. 

Even when C, is independent of x, as well as y, the charge on the interface gives 
rise to a nonuniform distribution of ions. Counterions simultaneously experience 
electrostatic attraction, which tends to bring them to the interface, and Brownian 
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motion, which tends to distribute them uniformly. If the solution is ideal (i.e. dilute) 
the flux of either species is given by the NernsbPlanck equation 

where i = + and - respectively denote the cation and anion, Di is the diffusion 
coefficient of the ion, 4 is the electrostatic potential field, Z,e is the charge carried 
by a single ion, k is Boltzmann’s constant and T is the absolute temperature. We shall 
assume Z, = -2- = Z from here on. At equilibrium, a balance is achieved between 
the effects of the electrostatic force and Brownian motion such that Ni = 0 for all 
x and y, and a Boltzmann distribution of ions arises: 

C ,  = C,exp(+@), (2.2) 

where @ is the dimensionless electrostatic potential : 

A second relationship between the distribution of ions and the electrostatic force 
acting on them is provided by Coulomb’s law, which for continua is represented by 
Poisson’s equation : 

(2.4) V2$ = 4nZe(C+ - C - ) / E ,  

where E is the dielectric constant of the fluid. Substitution of (2.2) into (2.4) yields 
the Poisson-Boltzmann equation, which can be integrated (subject to $ = $sat y = 0 
and $+$, as y-tco) to obtain 

tanh +@ = y ePKY, (2 .5)  

where 
Ze5 8nZ2e2C, 
4kT ’ ekT 

y z tanh- K~ = 

and 5 = $s-$,. This analysis was first reported by Chapman in 1913. Later, Debye 
& Huckel solved the linearized form of the Poisson-Boltzmann equation to determine 
the spherically symmetric distribution of ions about any given central ion as an 
intermediate step in their theory of thermodynamic activity for strong electrolytes. 

The characteristic distance over which @ (and therefore C, and C-) decays to  its 
asymptotic limit as y+ co is called the ‘Debye length’ cl, which varies from about 
1 pm in distilled deionized water (C, x lo-’ M )  to about 1 nm in a physiological saline 
solution (C, x 0.1 M).  The fluid within one or two Debye lengths of a charged 
interface contains an excess of oppositely charged ‘counterions’, and hence is not 
electrically neutral. This layer of solution forming a counterion cloud, together 
with the layer of fixed charges a t  the interface, is electrically neutral overall and is 
collectively called the ‘double layer ’. 

Suppose that  C, is not uniform, as was assumed above. In  order to  have no current 
arising from cocurrent diffusion of the counterions and coions in an electrically 
neutral solution, we must require that N+ = N- in (2.1), which can only occur if an 
electric field arises spontaneously : 

(2.8a, b)  
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This gives rise to a net flux of the electrolyte : 

20 ,  D- 
D, + D- N ,  = -DVC,,  D (2.9a, b )  

Since N $I 0, the solution is not strictly a t  equilibrium; however, the concentration 
a t  nearby points might still be approximately related by Boltzmann's equation. I n  
particular, if the Debye length is much less than the distance over which C ,  varies 
appreciably (more precisely, if (V In Cml 4 K ) ,  then ions in the double layer along any 
normal to the surface are still nearly in equilibrium, so that 

C+(x,y) = Cm(4 eXP[T@(x,Y)l, (2.10) 

@(Xl Y) = [@(? Y) - @,W1. (2.11) 
Ze 

Furthermore, if the tangential component of the electric field is negligible compared 
to the normal component (more precisely, if IE,I 4 K I ~ J ) ,  then a2/ax2 4 a2/ay2 in (2.4) 
and integration again yields (2.5)-(2.7), where now C(x) = @(x, O)-@,(x). 

Fluid elements inside the double layer are charged and experience an electrostatic 
body force. Including this force in Stokes' equation yields 

- q V 2 V + V p + ( C + - C - ) Z e V @  = 0. (2.12) 

Scaling arguments applied to the continuity equation show V, to be the only 
significant velocity component ; thus we may immediately deduce the hydrostatie- 
pressure profile by integrating the y-component of (2.12) using (2.10) for the ion 
distributions : 

p(x, y) -P, = 2kTC,(x) {cash [@@> y)1- 11. (2.13) 

Substituting this result into the x-component of (2.12) yields 

d2 vz = (C, - C-) Ze d@* ~ + 2kT[cosh @ - 11 dC, __ 
q d y 2  dx dX 

(2.14) 

Thus the concentration gradient itself, as well as the electric field induced by the 
concentration gradient, give rise to an imbalance between the hydrostatic pressure 
and electrostatic stress. Fluid elements then accelerate until the resulting viscous 
stress brings the forces into balance. Substituting (2.5) in (2.14), then integrating 
twice, yields the relative velocity between the distant fluid and the solid: 

(2.15) 

Of course, the first term is just the result obtained by Helmholtz for the relative 
motion induced by a macroscopic electric field. The second term is an additional 
contribution which is analogous to motion generated by gradients of non-electrolytes ; 
the form of this term is mathematically equivalent to an expression reported in a 
footnote by Derjaguin et al. (1961). In the absence of an externally applied electric 
current, d@,/dx can be deduced from (2.8). After substituting this result together 
with from (2.7), (2.15) becomes 

(2.16) 

I L M  148 

9 
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2.2. Large particles ( A  -+O) of arbitrary shape 

Suppose that the interface portrayed in figure 1 is the surface of a particle of arbitrary 
shape whose smallest principal radius of curvature E at every point on its surface is 
infinitely greater than the thickness of the counterion cloud (ICE+ a). Let X, be the 
position of the centre of the particle, and let r = x-x, be the position in a frame 
of reference moving with the particle at its velocity U,.t 

Consider a closed surface 9’; which surrounds the particle and the entire double 
layer. Since the region enclosed by this surface is electrically neutral, the net force 
exerted on this boundary by the fluid must vanish (see Appendix A). One solution 
that satisfies Stokes’ equations and this zero-force condition is potential flow : 

v =  -V#, (2.17) 

where, outside of 9’;, #(r)  satisfies 

V2# = 0, 

n * V # = O  onYpf, 

V # + U ,  ( r - t c o ) .  

(2.18) 

Of course U, is unknown, so (2.17)-(2.18) are incomplete. 
Since the fluid is electrically neutral outside the double layer, we have C, = C- = C. 

If convective transport of ions is neglected, then, outside of 9’;, continuity of the 
ions and (2.9) reduce to 

v2c = 0, 
n * V C = O  onY;, 

VC+VC, = ae, (r+ co), 
(2.19) 

where a = IVC,l. In principle, (2.19) can be solved for C(r ) ,  but this is not necessary. 
Note that (2.18) and (2.19) have the same form including the same condition on 9’;. 
Now consider the flow within the double layer at the particle surface, which is shown 
on the scale of K - I  in figure 1 .  The velocity of the fluid on 9’; is found by applying 
(2.16) with VJO) = 0, or 

(1-nn).[V+bVInC]=O onY;,  (2.20) 

where -6 is the coefficient of dlnC,/dz in (2.16). 
Although C varies from point to point on ’s”;, the total variation over the entire 

surface is on the order of aL, where L is a characteristic dimension of the particle. 
If the undisturbed electrolyte gradient is not too steep, so that aL < C,(x,), then 
VlnC in (2.20) can be replaced by [C,(X,)]-~VC. To find V,, we define a function 
Y -= q5 - [b/C, (x,)] C, which must satisfy 

V2Y = 0, 
V Y = O  onYp+, 

(2.21) 

t The subscript 0 is added here to denote the special case in which A = 0. 
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This problem is ill-posed and has no solution unless U, takes on that value for which 
the second boundary condition is V Y +O as r+ 00. Then the trivial solution (V Y = 0 
for all r )  is obtained. The particle velocity that admits this solution is 

1 (1-y2) VlnC,, 4x7 Ze 
(2.22) 

where C,(x) is the electrolyte concentration field in the absence of the particle. This 
result is generally valid for a particle of any shape in the limit that K - ~  is negligibly 
small compared with the smallest principal radius of curvature a t  all points on the 
particle surface. Of course, neglecting convective transport of the electrolyte in (2.19) 
also requires U,L/D << 1,  where D is the electrolyte diffusion coefficient in (2.9). 
Equation (2.22) was previously deduced by a more intuitive method (Derjaguin et 
al. 1961 ; Dukhin & Derjaguin 1974). 

Morrison (1970) showed that the flow outside the double layer is also irrotational 
for the motion of a charged particle of arbitrary shape in an applied electric field 
(electrophoresis), provided that the double layer is everywhere thin compared with 
the radius of curvature. The problem of diffusiophoresis is similar to electrophoresis 
in this respect. Again, the irrotational nature of the flow outside the double layer is 
a consequence of the zero-force constraint discussed in Appendix A and in part 1 of 
this series. Consequently, the velocity field far from the moving particle decays as 
r-n,  where n > 1 .  Thus the particle cannot be represented by a Stokeslet, but rather 
is characterized by force dipoles or higher moments. In  the case of diffusiophoresis 
or electrophoresis with ti+ 00, the velocity is O ( V ~ )  rather than O(r-l)  for Stokes flow, 
so that hydrodynamic interactions between, say, two particles or one particle and 
a neighbouring rigid surface will be much weaker. Because the zero-force constraint 
that leads to this behaviour is characteristic of electrophoresis and diffusiophoresis, 
we might use the phrase ‘phoretic flows’ to denote the class of problems that impose 
this constraint. Not all phoretic flows correspond to potential flow; other velocity 
fields can also satisfy the zero-force constraint. For example, potential flow is not the 
outer solution for finite ~ t i  or when convective transport of the solute is important. 

3. Thin counterion cloud ( A  4 1) 

Although particle size and shape have no effect on diffusiophoretic velocity in the 
limit A + O ,  these geometric factors become important when the Debye length is finite 
compared with the particle radius. Two considerations must be addressed. First, the 
distribution of ions cannot be assumed to correspond to thermodynamic equilibrium. 
Instead one must solve the appropriate convectivdiffusion equations inside and 
outside the double layer. Secondly, the r-component of the fluid velocity near the 
particle surface is no longer negligibly small, but instead exerts an influence on the 
distribution of ions within the double layer. As we note below, convection can be 
significant (when O(h) contributions are considered) even as l7alD-t 0. The notation 
of § 2 is used in the analysis that follows : in particular, r is the position vector relative 
to the centre of the moving sphere. The equations describing the ion distributions 
are solved first, and then the particle velocity is computed to O(h) .  Fortunately, the 
coupling between the ion distributions and the fluid velocity occurs a t  different orders 
in A ,  so that the two sets of equations can still be addressed sequentially. 

9-2 
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3.1. Ion-concentration $fields 

The standard convective-diffusion equation with an electrical migration term is used 
for each ion: 

I C,-C,(x) = C,(x,)+ar cose  (?.+a), 

where V is the fluid velocity and a is the magnitude of the undisturbed electrolyte 
gradient. The condition at r = a means that no ions can penetrate or accumulate a t  
the particle surface. As before, we consider only a symmetrically charged electrolyte 
with Z = Z ,  = - Z-. Changes in the electrical potential are determined from Poisson's 
equation : 

I 

where /3 is defined by ( 2 . 8 b ) .  We purposely avoid stating the boundary condition on 
$ a t  r = a because, as demonstrated later in this section, i t  is sufficient to specify 
thezeta potential, 6 = $(a) - $,(x,), that  exist s a t  equilibrium (a  = 0). In  formulating 
the r+co condition from (2.8), we assume aa 4 C,(x,) so as to replace VlnC, by 
[C,(x,)]-' VC,. Note that subscript 03 on C and t,b now denotes the 'undisturbed' 
field that would exist in the absence of the particle. 

If the electrolyte solution is only slightly non-uniform, then the perturbations in 
concentration and potential away from equilibrium (which occurs when a = 0) will be 
small. We define the dimensionless perturbations (ci ,  @l and u') such that 

Ci = +sac; + O(a2),  (3.3a) 

(3.36) 

(3.3c) 

where K is defined in (2.7). Since (dldt) C,[x,(t)] = aU and since U is O ( a ) ,  we conclude 
that aC,/at in (3.1) is O(a2).  In  what follows, we neglect all O(a2)  terms. Besides a 
slightly non-uniform concentration field, this requires that lJa/D + 1 ; using (2.7) and 
substituting the coefficient of u1 in ( 3 . 3 ~ )  for the characteristic speed c', this latter 
requirement becomes 

where 

(3.4) 

(3.5) 

A sample calculation shows that Pe z 0.1 in aqueous solutions; thus (3.4) is also 
satisfied if aa + C,(X,). The spatial coordinates are madc dimensionless by dividing 
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them by a (p = ./a). Substituting (3.3) into (3.1) and (3.2) and collecting terms O(ao) 
yields a result that resembles the Boltzmann distribution (2.10) : 

CO,= C',(x,)exp(-Q>O), CO=C,(xo)exp(+@o), (3.6a, b )  

7 ; j - [ p2dp . l  d@O = h-2sinh@o, 1 d 

P P  

- ZeC 
kT 

@ O = < = - -  ( p =  l ) ,  
( 3 . 6 ~ )  

@O+O (p-.oo), 

where h = ( m - l  is considered a small parameter. The solution for @ O  was derived 
recently by Chew & Sen (1982) as an expansion in A. In  terms of an 'inner variable' 
y = A-'(p- 1 )  and the surface-charge parameter y defined in (2.6), their inner 
expansion is 

= 4:(y)+h4:(Y)+O(h2) (Y = 0(1))> (3.7) 

[ y2( 1 - e-2y ) -2YL 
2y e-y 

4: = 1 - y 2  e-2Y 

where 4; is given by (2.5). These results are needed later. It is also important to note 
that, asp+co,  Go - exp[-h-l(p-l)] for any A. 

The O ( a )  equations, obtained by substituting (3.3) into (3.1) and (3.2), can be 
uncoupled and greatly simplified by defining two new variables P and Q: 

P = (COS 0)-l [c: exp (Q0)  + G1], (3.9a) 

Q = (COS 0)-l [c' exp ( -  @o) -@I],  

(3.1) then becomes 
d2P 2 d@O d P  2 v: d@O 

dp2 [ p  dp 1 d p  p2 
-+ ---P= (/3-l)[-]Pe-; cos0 dp 

(3.96) 

(3.10a) 

(3.10b) 

Besides uncoupling the ion-transport equations, the definitions (3.9) provide another 
important benefit: they avoid the explicit appearance of @l in (3.10) or in the 
boundary conditions; furthermore, the driving force for fluid flow in the double layer 
(as demonstrated later) is 

S = (COS O)-l [c:-c~+ (2 cash Go) @'I, (3.11) 

from which @l can also be eliminated: 

S = p e-9' - Q e+@' (3.12) 

One consequence of eliminating the perturbation in potential is that (to O ( a )  a t  least) 
we do not have to specify how the surface potential is perturbed by the electrolyte 
gradient : the zeta potential < a t  equilibrium is the only electrostatic property of the 
particle which affects its diffusiophoretic velocity. The same conclusion was reached 
by O'Brien & White (1978) in their analysis of electrophoresis. 
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Our strategy for solving (3.10) is to develop expansions in h for P and Q in both 
the inner region (y = h-l(p- 1) = O(1)) and outer region ( p  = 0(1)), then to match 
these expressions appropriately a t  the boundary of the two regions. To accomplish 
this, we borrow results from the analysis of the velocity field below, which shows that 

(3.13) 

with ~ , , ~ ( y )  given by (3.24). After following the above strategy, we obtain the 
following solution within the inner region : 

w: = [hw,, ,(y) + O(h2)] cos 0 (y = O( 1)) 

P = Pi) = p0+hp1+h2p2+ ... ) 
Q = Qi) = ~ o + h q 1 + h 2 ~ z + . . .  

(3.14) 

Note that Pi) and Q(i) are independent of y and 0 through O(h) .  A subtle feature of 
the matching between inner and outer expansions for P and Q is that  we had to 
evaluate the derivative of the O(h2) term of the inner solution (for example dp,/dy) 
in the limit y + 00 in order to  determine p1 and ql.  The function S is obtained for the 
inner region by substituting (3.14) into (3.12): 

s = So(Y)+As1(y)+O(h2) (Y = 0(1)), (3.15) 

so = - 3[p cosh q5: + sinh $3, 
s1 = - 3q5;[p sinh q5: + cosh $3 

q5: and q5; are found in (2.5) and (3.8), while wr, is given by (3.24). 

3.2. Velocity Jield 

Stokes' equation is modified to include an electrical body-force term which is non-zero 
only within the double layer, or when y = O(1). Using dimensional variables, 

qV2V-Vp-Ze(C+-C-)V@ = 0 ,  (3.16) 

v * v =  0, (3.17) 

v = o  ( r =  a ) ,  

V - t -  Ue,+O(r-n)  (r+co) ,  

where U = Ue, is the particle velocity in a laboratory-fixed reference frame. As 
discussed in Appendix A, the net force exerted by the fluid on any closed boundary 
outside the double layer must be zero to O(a) ,  which implies that  V decays to - U 
as O(r-n) ,  where n 2 2. By requiring V to decay in this manner, the above equations 
can be solved to  obtain U .  
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After taking the curl of (3.16) and using the dimensionless variables of (3.3) and 

(3.18) 

(3.11), we have the following O(a)  terms: 
d @ O  

e,.Vz(V x u l )  = h2p-lS(p) ~ sin 0, 
dP 

V*ul  = 0, 

0' = 0 (p = l ) ,  

ul+-ue,+O(p-n), n 2 2 

where u is the dimensionless particle velocity, 

u = [Cq-l u, (3.20) 

and S is given in general by (3.12) or in the inner region by (3.15). We solve for u1 
by considering the inner and outer regions separately and then matching. In the outer 
region, the right-hand side of (3.18) is O(h"') because - exp [ -h-l(p- l)]; thus 
an outer field that satisfies (3.18)-(3.19) and the p+m condition is 

u1 = - [ ~ + b p - ~ ]  c ~ s O e , + [ u - b p - ~ ]  sinOee (p = 0(1)), (3.21) 

u = uO+ulh+O(h2) ,  b = b,+blA+O(h2). 

The coefficients u, and b, are found by matching this result, expressed in the y-variable, 
with the inner solution. 

In the inner region we expect a solution of the form 

v1 = wr(y) cosOe,+w,(y) sinOee (y = 0(1)), (3.22) 

wr = wr, O(Y)  + hwr, l(y) + O(h2),  

we = We,o(Y)+hw,,,(Y)+O(h2), 

w, = we = 0 (y = 0). 

The weJn are determined by solving (3.18), one order in A at a time, with wr,, 
determined from (3.19). The final equations are 

The solution to these equations is obtained by direct integration, with the integration 
constants determined from the boundary condition at y = 0 and by matching (3.22) 
with (3.21). s,(y) and gl",y) are found in (3.15), (3.8) and (2.5). Note that wr, is needed 
to compute s1 : 

After matching we obtain 

(3.24) 

(3.25 a )  
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In  dimensional terms, the corresponding particle velocity is 

(3 .26)  

which is correct to O(A).  

3.3. Computation of particle velocity 

After substituting (3.15) for so in (3 .25a) ,  using 4; given by ( 2 . 5 ) ,  then integrating, 
we obtain 

uo = 2/3~-41n(1-y2), I 
(3.27) 

where y is given by ( 2 . 6 ) .  This result is the same as that derived in 92 using the result 
of flat-plate analysis ax the 'slip velocity'. Unfortunately u1 cannot in general be 
expressed in terms of elementary functions of 5. However, if 151 is restricted to small 
values, a regular expansion in powers of c can be performed to give 

u1 = -6/3c-9?+0(?). (3.28) 

Combining this with the O(ho)  result and neglecting O ( p )  terms, we obtain 

(3.29) 

where the error of this expression is O ( p )  and O(h2). 

representation of these results which allows substitution of arbitrary /3 and Pe is 
We were forced to  numerically evaluate u1 at larger zeta potentials. A convenient 

u1 = l$ +BE; + Pel F2 + /3( 8 + 4)  +p24] ,  (3.30) 

where the formulae for F,(y) are determined by comparing (3 .30)  with (3.253) and 
are given in Appendix B. The asymptotic behaviour of these coefficients as ( g + O  
is given by 

Fo = - ~ ~ + O ( ~ ) , ,  Fl = -65+0(?), (3 .31a,  b)  

F2 = --c ; 4+0(p), F~ = - g 5 + 0 ( ~ 7 ) ,  (3.31 c , d )  

F ---< - ,',-4+~(p),, & = -2p+0(55) .  (3.31 e , f )  

Numerical evaluation of these integrals as a function of zeta potential leads to the 
values shown in table 2 in Appendix B, which are plotted in figures 2 and 3. Except 
for the requirements that  i t  be binary and symmetric (2, = -2- = Z ) ,  (3 .30)  is 
generally applicable to any choice of electrolyte. Physical properties are contained 
in c, p and Pe. Note that F'( -5) = (-  l)n F,(%). 

As a sample calculation, we computed uo and u1 versus zeta potential for three aque- 
ous solutions a t  25 "C: NaCl (/3 = -0.195, Pe = 0.16) ,  KCl (/3 = -0.0068, Pe = 0.13)  
and NH4F (/? = 0.147, Pe = 0.15).t These results are plotted in figures 4 and 

t These values of Pand Pe were computed from (2.86) and (3.5) using limiting ( C + O )  equivalent 
conductances of the separate ions. 
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FIGURE 2. Odd functions appearing in (3.30). 5 is the dimensionless 

potential in the absence of the electrolyte gradient. 
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FIGURE 3. Even functions appearing in (3.30). 
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FIQURE 4. Dimensionless O(ho) contribution to  particle velocity (see (3.26)) 
zeta potential for three electrolytes in water at 25 "C. 

300 

200 

-u1 

100 

0 

- 

I I I I I I I I I 

-- 3 - 1  1 3 5 
5 

versus dimensionless 

FIGURE 5. Dimensionless O(A1) contribution to particle velocity (see (3.26)) versus dimensionless 
zeta potential for three electrolytes in water at 25 "C. 
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5 .  Because ,4 is so small for KC1, a charged particle of either sign moves toward higher 
electrolyte concentration except when 5 is in a small range of positive numbers, for 
which case the direction is toward lower electrolyte concentration. Because -,4 is 
larger for NaCI, a particle would move toward lower electrolyte concentration over 
a broader range of positive zeta potentials. 

4. Discussion 
Diffusiophoresis can be considered a linear combination of two effects: (1) 

' chemiphoresis ' due to non-uniform adsorption of counterions over the surface of the 
sphere, and (2) 'electrophoresis' due to the macroscopic electric field generated by 
the gradient of electrolyte concentration (see ( 2 . 8 ~ ) )  : 

u = uc") + U e ) ,  (4.1) 

u(') = ( gy { - 4 ln ( 1 - y2)  + h [Po + pe(& + p&)] + O(h2)}  V In C, , (4.2 a )  87~7 Ze 

(4.2b) 

where 5 is the dimensionless zeta potential, h = (Ka) - l ,  and y and ,4 are given by (2.6) 
and (2.8b). In appendix C we show that (4.2b) also applies to electrophoresis through 
a macroscopically uniform solution caused by an impressed electric field. The linear 
superposition in (4.1) is possible because the governing ion-transport equations were 
linearized with respect to the gradient a = IVC,I. If O(a2)  were included, such 
superposition of the two phenomena would not be possible. Moreover (4.1) and (4.2) 
apply to solutions in which there are simultaneously an electrolyte concentration 
gradient and an applied electric field (i.e. current is passed through the solution). 

By considering the limit h+O and 151 < 1 ,  it  is easy to see that chemiphoresis is 
analogous to diffusiophoresis of non-electrolytes (Anderson et al. 1982). For adsorption 
onto a flat surface, the Gibbs excess concentration of electrolyte at equilibrium is 

fa0 fa0 

r = ~ K - I  J [C, + C- - ZC,] dy = K - ~ C ,  J [cosh $: - 11 dy. (4.3) 
0 0 

After substituting @ from (2.5), we obtain 

(4.4) 

where K is the 'adsorption length'. For h = 0 the chemiphoretic contribution ( 4 . 2 ~ )  
can be expressed in terms of K :  

(4.5) 
4kT Up = ~ In ( 1  + + K K )  vc,. 
K27 

Comparing with the diffusiophoretic velocity for non-electrolytes, given by (4.2) of 
Anderson et al. (1982), we conclude 

L*K = 4 ~ - ~ l n ( l + S j ~ K ) + ~ - l K  (K+O) .  

Thus, for h = 0 and 151 4 1 ,  (4.5) for electrolytes takes on the same form as was 
previously obtained for non-electrolytes, with the Debye length K - ~  corresponding 
to L* as well as the length L characterizing the decay of @(y). 
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For non-electrolytes, Anderson et al. concluded that curvature could be neglected 
if and only if L and K were both much smaller than the particle radius. If this 
conclusion is applied to electrolytes using L = K-' and (4.4), then 

h etlgl .g 1 (4.6) 
is sufficient to neglect curvature. Of course, when lCl is large, this implies that h has 
to be very small indeed, owing to the large value of the adsorption length. 

Each term in (4.1) can be expanded separately: 

uCi) = uC:) [l + G ( i ) A + O ( h 2 ) ] ,  (4.7a) 

where (i) equals (c) or (e). Since U,/Uo may be singular, the total velocity given by 
(3.26) cannot be expressed in this standard form. Comparing ( 4 . 7 ~ )  with (4.2) shows 

The expression for VC,.) is equivalent to Smoluchowski's equation for electrophoresis, 
while our expression for w) agrees with the expression derived by Anderson (1980) 
for 151 < 1 and with that presented by Dukhin & Derjaguin (1974) for arbitrary 5. 
In  the case of small zeta potential, (4.7) reduces to (3.29), and hence 

G(') = -9+0(5), G(e) = -3+O(C). (4.8a, b)  

For both chemiphoresis and electrophoresis, curvature retards the speed of the 
particle. Note that (4.8b) agrees with the Ofh)  effect derived by Henry (1931) for 
electrophoresis. 

When IcI is not small, the coefficients GCi) can become quite large. To neglect O(h2) 
in (4.7) we anticipate that a necessary condition is that  lGhl 4 1 or that (4.6) is true. 
Indeed,if -GcC)h > 1 andp = 0, we predict migration towardlowersalt concentration, 
in violation of the second law of thermodynamics. The range of applicability might 
be expanded by replacing (4.7) with a low-order Pad6 approximant in which the O(A2) 
term is dropped: 

This form avoids sign reversal as h is increased because the term in brackets is always 
positive. As shown in table 1 ,  the Pad6 form for U(e)  gives quite good agreement with 
the 'exact ' (numerical) values of O'Brien & White (1978) for electrophoretic mobility. 
Although we have no exact values of uc) with which to compare (4.9), we expect 
good agreement here as well. 

A sample calculation illustrates that  diffusiophoresis can be an important transport 
mechanism in boundary layers. Consider a 0.1 pm radius particle having [ = -2 in 
aqueous NaCl solution having a concentration of 0.1 mol dm-3 (M)  at 25 "C 
( A  z lop2). Let IVC,J = 1.0 M em-'. From (4.7) and table 2 (Appendix B) we have 

U p )  = 0.248 pm/s, 

U p )  = 0.401 pm/s, 

G(") = - 13.7, 

Q(c) = -5.32. 

Substituting these values into (4.9) with h = 9.6 x gives 

U(c)  = 0.219 pm/s, U(e)  = 0.381 pm/s. 

The diffusive (Brownian-motion) velocity of the particle is D/1, which equals 
0.025 pm/s for E = 100 pm (a typical boundary-layer thickness). This example 
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FIGURE 6. A map showing the direction of net migration for KU = CO. 

indicates that  diffusiophoresis dominates Brownian diffusion and hence would 
significantly enhance the rate a t  which particles are transported through the 
boundary layer. Diffusiophoresis has been used commercially for large-scale coating 
of metallic surfaces by latex paint (Smith & Prieve 1982). 

I n  the example above, both electrophoresis and chemiphoresis act to  move the 
particle in the direction of higher salt concentration. Generally speaking, chemi- 
phoresis always acts in this direction, while electrophoresis either acts in concert with 
chemiphoresis or in competition, depending on the sign of /35. 

A map showing the direction of net migration is provided in figure 6. Inside the 
first and third quadrants, chemiphoresis and electrophoresis act in concert to  produce 
migration toward higher salt concentration, while in the second and fourth quadrants 
the two compete. When competition occurs, a change in the absolute magnitude of 
5 can cause a reversal in the direction of migration although the sign of 5 remains 
the same. This reversal in direction might have some interesting consequences for 
separating mixtures of similar particles. For example, in a gradient of NaC1, particles 
having c = 1 move toward lower concentration, while particles with 5 = 2 move in 
the opposite direction. 

This map of directions is for very large particles. For particles of moderate size, 
the direction of migration also depends on the size. Since a reduction in the radius 
of curvature tends to retard chemiphoresis more than electrophoresis, the region of 
the second and fourth quadrants in which electrophoresis wins the competition grows 
as KU decreases. Let c*(p, Pe, A )  denote the non-trivial value of 5 for which the two 
opposing contributions exactly cancel each other to  produce U = 0. For small zeta 
potentials one can use (4.7) and (4.8) to deduce that 

c* = - 8 [ l + y A + O ( A 2 ) ] p  (151 4 1 ) .  (4.10) 
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0.3980 
0.8036 
1.2267 
1.6676 
2.1712 
2.7340 
3.4096 
4.2927 
5.6640 

10.000 

0.0310 
0.0329 
0.0369 
0.0432 
0.0528 
0.0685 
0.0940 
0.1433 
0.2579 
0.7095 

0.0298 
0.0320 
0.0361 
0.0426 
0.0528 
0.0692 
0.0971 
0.1502 
0.2765 
0.7966 

0.0008 
0.0034 
0.0080 
0.0153 
0.0267 
0.0445 
0.0741 
0.1287 
0.2519 
0.7143 

0.0052 
0.0021 
0.0109 
0.0220 
0.0366 
0.0571 
0.0885 
0.1430 
0.2610 
0.7078 

t Numerical values for results of OW, OH and DUK were obtained from tables in O’Brien & 
Hunter (1981). 

TABLE 1. Comparison of various analytical approximations for EM* at A = 0.01 
with the numerical results of O’Brien & White (1978) 

Thus c* = c*(P, Pe, 0) is the equation of the curve in figure 6. Since the value of zeta 
potential a t  which a reversal occurs depends on A, particles of different size but the 
same zeta potential might migrate in opposite directions. 

As a final point of discussion, we remark on the differences between our analysis 
of the polarized double layer and that of O’Brien & Hunter (1981, hereinafter referred 
to as OH) which is closely related to the method of Dukhin and coworkers (Dukhin 
& Derjaguin 1974). OH define the perturbation in double-layer structure by 
parameters GI and G2 (see their equation (2.1)), which are related to our perturbation 
variables when O(a2) terms are neglected : their Qil is our - P cos 8, their Qi, is our 
+ Q  cos8, and their equation (3.4) is equivalent to our (3.9). The essential difference 
is that terms O(A) are neglected in their mathematical solution, but terms O(he4f) 
retained; hence the validity of their result is restricted to A + O  but eff sufficiently 
large that he% is finite (O’Brien 1983). 

Although the result ofOH showsexcellent agreement with the numerical calculations 
of electrophoretic mobility by O’Brien & White (1978, hereinafter referred to as OW) 
when h < 0.02 and c > 5 ,  the OH analysis breaks down at smaller c. Table 1 lists 
the normalized curvature correction EM* as a function of for a hypothetical 
electrolyte ( z  KC1) having P = 0, Pe = 0.138 and 2 = 1 : 

EM-iC 6 q ~ Z e  U(“) 
EM* = - , E M = - -  ic EkT E m ’  

where E ,  is the applied electric field. From (4.9) and ( 2 . 8 ~ )  we have 

(4.11) 

(4.12a) 

(4.12b) 

where G(“) is computed from ( 4 . 7 ~ ) .  At 5 5 1 we notice that the OH prediction departs 
significantly from OW, as should be expected since OH did not consistently match 
inner and outer solutions to O(h).  Our result, while not as good as the OH result when 

is very large, is quite accurate for the entire range of h < 0.1 and 151 5 5 ,  and is 
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asymptotically correct as h+O at any 5. Note that ( 4 . 1 2 ~ )  predicts a maximum in 
EM versus c for any given A ,  as confirmed by the calculations of OW. 

In  summary, we have analysed the movement of a charged sphere through a 
solution having a gradient of concentration of a simple electrolyte. Our perturbation 
analysis leads to results correct to O(h) ,  as presented in (3.26), (3.27) and (3.30). The 
required functions F,(Z) have been computed from the formulas in Appendix B, and 
the results are numerically displayed there in table 2.  To extend the accuracy of the 
O(h)  analysis to larger values of A, one may use the Pad6 approximant (4.9) with the 
expressions in (4.7). Applying this scheme to the electrophoretic component Ve) 
and comparing the predictions with the calculations of O'Brien & White (1978) for 
electrophoretic mobility in table 1, we find reasonable agreement for h 5 0.1 and c < 10, and excellent agreement for < < 5. Given the physical properties c = Zec/lcT, 
h = ( ~ a ) - l ,  p and Pe (see (2 .8b)  and (3.5) respectively), (4.1), (4.7) and (4.9) can be 
used to compute particle velocity in an electrolyte gradient with or without an 
impressed electric current. The major assumption in our analysis is that the 
electrolyte concentration field is only slightly nonuniform so that the response of the 
particle is linear in the driving forces; also we have not accounted for asymmetric 
electrolytes (2, + - 2-), weak electrolytes or non-ideal solution behaviour. 

This work was supported by a grant from the National Science Foundation and a 
Fellowship (to J. L. A.) from the John Simon Guggenheim Memorial Foundation. 

Appendix A. Velocity far from a charged particle 
Consider a surface Y enclosing the particle and surrounding fluid such that p 9 1 

a t  all points on 9, and let n be the outwardly pointing normal. At steady conditions 
the total force on the body enclosed by 9' must be zero: 

J9n.,Tf+Te,rtS = 0. (A 1 )  

rf is the Newtonian stress tensor, while .ee is the Maxwell stress tensor accounting 
for electrical body forces acting on the body (Woodson & Melcher 1968): 

E E 
T~ = - EE-- E21, 

4n 87~ 

where Eis  the electric field, which is given in terms of the variables in (3.3 b )  as follows : 

Since Qio - exp ( - h-' p )  --f 0 and IV@( - p as p + 03, 

From (A 1 )  we have 

lim 5, n- r ,  d~ = 0(a2), 

p-L* 

and hence the net fluid (viscous) stress on 9' is zero to O(a). 
Far outside the double layer (p- 1 $ A )  the axisymmetric flow field is governed 
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by the homogeneous Stokes equations, whose stream function has the following 

general form : a, 

Y ( p , O )  = Z [A ,pn+B,p -n+3+C,p -n+1]~ , ( cos6 ) ,  (A 6) 
n=z 

where the I ,  are Gegenbauer functions of the first kind, and A ,  equals ilJ while A ,  = 0 
for n 3 3. Using (A 6) one has (Happel & Brenner 1973) 

Comparing (A 5 )  with (A 7), we have B, = O(a2) ,  so that to O(a)  the far-field velocity 
must decay to - U as p-,, where n 3 2. 

Appendix B. Evaluation of F,(() in (3.30) 
The six coefficients in (3.30) were determined to be the following: 

1 d$O 
F,(c) = 5 j  y 2 f n L d y  (n  = 2, ..., 5 ) ,  

0 dY 
where 

f o (y )  = -3$y (e@:(Ylf- l)dy,-ee-@! (e-@:(YJ)-l)dy, Joa, 
= - 36: cosh 4: + 6[sinh (ic) cosh $: + cosh (frc) sinh q5: - sinh $3, 

1 f,(y) = - 3$: sinh 4: + dy, + e-6: Joa, (e-@X(vJ) - 1 )  dy, 

= - 3$: sinh 4: + 6[sinh (frc) sinh $: + cosh (ic) cosh $: - cosh $:I , 
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Y 
yln( l -y2) -S  0 1n(1-y2e-2Y1)dy1], (B 10b) 

(B 11 b )  

The second equation of each pair above was obtained by substituting (2 .5)  for @(y) 
and (3.8) for $y(y). Numerical values of the six coefficients are tabulated in table 2 
for some positive values of c. Corresponding values of the coefficients for negative < can be deduced from 

Fn(-c)  = (-1)%Fn(C) (n = 0,1, ..., 5 ) .  (B 12) 

Appendix C. Electrophoresis of a rigid sphere 
I n  electrophoresis the particle movement is driven by an applied electric field 

(E,  = E ,  ez) ,  and the undisturbed electrolyte concentration is constant (Cm). 
Equations (3.1) and (3.2) still apply, except that the far-field boundary condition is 
altered : 

( r+  a). 
c, --f c- + c,, 
+++“(xo) - E ,  r cost? 

The following replace (3.3) : 

Ci = C~+paC,c~+O(p2) ,  

@ = @O+pua@l+O(p2), 

J7=- pcm kT u’ + O(p2), 
T K 2  

where p = (Ze/k:T) E,. Substituting (C 2) into (3.1) and (3.2) and collecting O@O) 
terms yields (3.6), while the O(pl)  terms give (3.10) with the following far-field 
boundary conditions : 

P+-P, & + + p  @+a). 

The solution for P and Q to O(h)  in the inner region is 
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where w ~ , ~  is given by (3.24). After substituting (C 3) into (3.12) and expanding 
according to (3.15), we have 

where thefn are found in Appendix B. Using this result in (3.25) gives, in dimensional 
form, the electrophoretic velocity : 

uo = 2y, 

which is asymptotically correct to O(h) .  Note that the O(ho) result is Smoluchowski’s 
expression. 
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